Analyzing Documents with TF-IDF | Programming Historian

Analyzing Documents with TF-IDF | Programming Historian

Introduction: The indispensable Programming Historian comes with an introduction to Term Frequency – Inverse Document Frequency (tf-idf) provided by Matthew J. Lavin. The procedure, concerned with specificity of terms in a document, has its origins in information retrieval, but can be applied as an exploratory tool, finding textual similarity, or as a pre-processing tool for machine learning. It is therefore not only useful for textual scholars, but also for historians working with large collections of text.

Not All Character N-grams Are Created Equal: A Study in Authorship Attribution – ACL Anthology

Introduction: Studying n-grams of characters is today a classical choice in authorship attribution. If some discussion about the optimal length of these n-grams have been made, we have still have few clues about which specific type of n-grams are the most helpful in the process of efficiently identifying the author of a text. This paper partly fills that gap, by showing that most of the information gained from studying n-grams of characters comes from the affixes and punctuation.