Humanities Data Analysis: Case Studies with Python — Humanities Data Analysis: Case Studies with Python

Humanities Data Analysis: Case Studies with Python — Humanities Data Analysis: Case Studies with Python

Introduction: Folgert Karsdorp, Mike Kestemont and Allen Riddell ‘s  interactive book, Humanities Data Analysis: Case Studies with Python had been written with the aim in mind to equip humanities students and scholars working with textual and tabular resources with practical, hands-on knowledge to better understand the potentials of data-rich, computer-assisted approaches that the Python framework offers to them and eventually to apply and integrate them to their own research projects.

The first part introduces a “Data carpentry”, a collection of essential techniques for gathering, cleaning, representing, and transforming textual and tabular data. This sets the stage for the second part that consists of 5 case studies (Statistics Essentials: WhoReads Novels? ; Introduction to Probability ; Narrating with Maps ; Stylometry and the Voice of Hildegard ; A Topic Model of United States Supreme Court Opinions, 1900–2000 ) showcasing how to draw meaningful insights from data using quantitative methods. Each chapter contains executable Python codes and ends with exercises ranging from easier drills to more creative and complex possibilities to adapt the apply and adopt the newly acquired knowledge to their own research problems.

The book exhibits best practices in how to make digital scholarship available in an open, sustainable ad digital-native manner, coming in different layers that are firmly interlinked with each other. Published with Princeton University Press in 2021, hardcopies are also available, but more importantly, the digital version is an  Open Access Jupyter notebook that can be read in multiple environments and formats (.md and .pdf). The documentation, coda and data materials are available on Zenodo (https://zenodo.org/record/3560761#.Y3tCcn3MJD9). The authors also made sure to select and use packages which are mature and actively maintained.

Mining ethnicity: Discourse-driven topic modelling of immigrant discourses in the USA, 1898–1920

Mining ethnicity: Discourse-driven topic modelling of immigrant discourses in the USA, 1898–1920

Introduction: The article illustrates the application of a ‘discourse-driven topic modeling’ (DDTM) to the analysis of the corpus ChronicItaly comprising several newspapers in Italian language, appeared in the USA during the time of massive migration towards America between the end of the XIX century and the first two decades of the XX (1898-1920).

The method combines both Text Modelling (™) and the discourse-historical approach (DHA) in order to get a more comprehensive representation of the ethnocultural and linguistic identity of the Italian group of migrants in the historical American context in crucial periods of time like that immediately preceding the eruption and that of the unfolding of World War I.

Topic Modeling mit dem DARIAH Topics Explorer | forTEXT

Topic Modeling mit dem DARIAH Topics Explorer | forTEXT

Introduction: The first steps into working with digital methods of text analysis are often made with beginner-friendly tools. The DARIAH-DE TopicsExplorer opens up the world of topic modeling with an easy-to-understand GUI, numerous operating options and high-quality results. The team of forText of the University of Hamburg developed a tutorial (Lerneinheit) to guide users step by step from installing the software to the first results with a sample corpus. The tutorial also contains screenshots, videos, exercises and explanations. This follows the didactic concept of forText.

Analyzing Documents with TF-IDF | Programming Historian

Analyzing Documents with TF-IDF | Programming Historian

Introduction: The indispensable Programming Historian comes with an introduction to Term Frequency – Inverse Document Frequency (tf-idf) provided by Matthew J. Lavin. The procedure, concerned with specificity of terms in a document, has its origins in information retrieval, but can be applied as an exploratory tool, finding textual similarity, or as a pre-processing tool for machine learning. It is therefore not only useful for textual scholars, but also for historians working with large collections of text.

Teaching Quantitative Methods: What Makes It Hard (in Literary Studies)

Introduction: This article reflects on the lessons learnt by the author as he first taught a graduate course in digital analysis of literary texts. He stresses the importance of methodologies over technologies, the need for well-curated, community-created teaching datasets and the implications of the practical, discipline-based organisation of the curricula.