Humanities Data Analysis: Case Studies with Python — Humanities Data Analysis: Case Studies with Python

Humanities Data Analysis: Case Studies with Python — Humanities Data Analysis: Case Studies with Python

Introduction: Folgert Karsdorp, Mike Kestemont and Allen Riddell ‘s  interactive book, Humanities Data Analysis: Case Studies with Python had been written with the aim in mind to equip humanities students and scholars working with textual and tabular resources with practical, hands-on knowledge to better understand the potentials of data-rich, computer-assisted approaches that the Python framework offers to them and eventually to apply and integrate them to their own research projects.

The first part introduces a “Data carpentry”, a collection of essential techniques for gathering, cleaning, representing, and transforming textual and tabular data. This sets the stage for the second part that consists of 5 case studies (Statistics Essentials: WhoReads Novels? ; Introduction to Probability ; Narrating with Maps ; Stylometry and the Voice of Hildegard ; A Topic Model of United States Supreme Court Opinions, 1900–2000 ) showcasing how to draw meaningful insights from data using quantitative methods. Each chapter contains executable Python codes and ends with exercises ranging from easier drills to more creative and complex possibilities to adapt the apply and adopt the newly acquired knowledge to their own research problems.

The book exhibits best practices in how to make digital scholarship available in an open, sustainable ad digital-native manner, coming in different layers that are firmly interlinked with each other. Published with Princeton University Press in 2021, hardcopies are also available, but more importantly, the digital version is an  Open Access Jupyter notebook that can be read in multiple environments and formats (.md and .pdf). The documentation, coda and data materials are available on Zenodo (https://zenodo.org/record/3560761#.Y3tCcn3MJD9). The authors also made sure to select and use packages which are mature and actively maintained.

GROBID: when data extraction becomes a suite

GROBID: when data extraction becomes a suite

Introduction: GROBID is an already well-known open source tool in the field of Digital Humanities, originally built to extract and parse bibliographical metadata from scholarly works. The acronym stands for GeneRation Of BIbliographic Data.
Shaped by use cases and adoptions to a range of different DH and non-DH settings, the tool has been progressively evolved into a suite of technical features currently applied to various fields, like that of journals, dictionaries and archives.
[Click ‘Read more’ for the full post!]

Analyzing Documents with TF-IDF | Programming Historian

Analyzing Documents with TF-IDF | Programming Historian

Introduction: The indispensable Programming Historian comes with an introduction to Term Frequency – Inverse Document Frequency (tf-idf) provided by Matthew J. Lavin. The procedure, concerned with specificity of terms in a document, has its origins in information retrieval, but can be applied as an exploratory tool, finding textual similarity, or as a pre-processing tool for machine learning. It is therefore not only useful for textual scholars, but also for historians working with large collections of text.

The Uncanny Valley and the Ghost in the Machine

The Uncanny Valley and the Ghost in the Machine

Introduction: There is a postulated level of anthropomorphism where people feel uncanny about the appearance of a robot. But what happens if digital facsimiles and online editions become nigh indistinguishable from the real, yet materially remaining so vastly different? How do we ethically provide access to the digital object without creating a blindspot and neglect for the real thing. A question that keeps digital librarian Dot Porter awake and which she ponders in this thoughtful contribution.

Towards Scientific Workflows and Computer Simulation as a Method in Digital Humanities – Digitale Bibliothek – Gesellschaft für Informatik e.V.

Introduction: The explore! project tests computer stimulation and text mining on autobiographic texts as well as the reusability of the approach in literary studies. To facilitate the application of the proposed method in broader context and to new research questions, the text analysis is performed by means of scientific workflows that allow for the documentation, automation, and modularization of the processing steps. By enabling the reuse of proven workflows, the goal of the project is to enhance the efficiency of data analysis in similar projects and further advance collaboration between computer scientists and digital humanists.

Attributing Authorship in the Noisy Digitized Correspondence of Jacob and Wilhelm Grimm | Digital Humanities

Attributing Authorship in the Noisy Digitized Correspondence of Jacob and Wilhelm Grimm | Digital Humanities

Introduction: Apart from its buoyant conclusion that authorship attribution methods are rather robust to noise (transcription errors) introduced by optical character recognition and handwritten text recognition, this article also offers a comprehensive read on the application of sophisticated computational techniques for testing and validation in a data curation process.